Workshop: How to do laparoscopic and robotic promontofixation: theoretical and practical skills.

Workshop Chairs: Andrea Minervini, Florence, Italy
Domenico Veneziano, Reggio Calabria, Italy

Wednesday, 12 September 09:00-10:30

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Topic</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>9:05</td>
<td>Co-Chair Introduction</td>
<td>Andrea Minervini and Domenico Veneziano</td>
</tr>
<tr>
<td>9:05</td>
<td>09:35</td>
<td>Laparoscopic & Robotic Promontofixation: indications and step by step technique</td>
<td>Pierluigi Bove, Andrea Minervini, Domenico Veneziano, Giampaolo Siena, Agostino Tuccio</td>
</tr>
<tr>
<td>09:35</td>
<td>10:25</td>
<td>Laparoscopic and robotic Hands on Training session</td>
<td>Pierluigi Bove, Andrea Minervini, Domenico Veneziano, Giampaolo Siena, Agostino Tuccio</td>
</tr>
<tr>
<td>10:25</td>
<td>10:30</td>
<td>Closing Remarks and Take Home Message</td>
<td>Andrea Minervini and Domenico Veneziano</td>
</tr>
</tbody>
</table>

Speaker Powerpoint Slides
Please note that where authorised by the speaker all PowerPoint slides presented at the workshop will be made available after the meeting via the ICS website www.ics.org/2017/programme Please do not film or photograph the slides during the workshop as this is distracting for the speakers.

Aims of Workshop
This workshop is procedure-focused, and will boost and refine delegates theoretical and practical skills and knowledge on laparoscopic and robotic promontofixation. It will provide state-of-the-art Hands-on Training (HoT) courses using pelvic trainer stations and robotic simulators with specific exercises. It will allow the participants to optimize their skills on custom-made models with focus on the main steps of the procedure. Training will be tailored according to their level of expertise in a one to one learning experience.

Learning Objectives
1. Defining the correct indications for minimally invasive promontofixation.
2. Learning standardized laparoscopic and robotic promontofixation techniques.
3. Improving the participants’ laparoscopic and robotic surgical skills using specific simulated tasks, with the main goal of mastering endoscopic promontofixation.

Learning Outcomes
At the end of the workshop delegates will feel more confident in their practice of laparoscopic and robotic promontofixation.

Target Audience
Urologist and Gynaecologist wishing to learn the more about the minimally invasive treatment of pelvic organ prolapse.

Course Requirements
Basic laparoscopic surgical skills
Robotic console mastering skills

Hands-on Training session management:
- Each participant will be provided with a mesh at the beginning of the course. They will prepare their mesh during the theory part. 8 scissors + sutures (3-0) will be needed.
- Laparoscopic HoT: 10 minutes for running suture rehearsal + 20 minutes for simulated promontofixation
- Robotic HoT: instrument handling + suturing exercises

Suggested Learning before Workshop Attendance
- Practice in Pelvic Organ Prolapse (POP) management
- Basic Robotic console management.

Suggested Reading

WORKSHOP 36

HOW TO DO LAPAROSCOPIC AND ROBOTIC COLPOSacROPEXY: THEORETICAL AND PRACTICAL SKILLS

Chair: Andrea Minervini, MD, PhD; *Domenico Veneziano, MD
Dept. of Urology, University of Florence, Careggi Hospital, Florence, Italy
* Ospedale Reggio Calabria, Italy

Wednesday 13th September 2017

Andrea Minervini MD, PhD

1. Careggi University Hospital certified as ERUS Robotic Training Centre in 2015

2. Proctor for Intuitive Surgical /AB Medica

Domenico Veneziano MD

Affiliations to disclose*: INTECH innovative training technologies / consultant

Funding for speaker to attend:

☐ Self-funded
☐ Institution (non-industry) funded
☐ Sponsored by:

* All financial ties (over the last year) that you may have with any business organisation with respect to the subject matter of your presentation are to be disclosed.

INTECH innovative training technologies / consultant

How to do Laparoscopic and Robotic Colposacropexy: Theoretical and Practical Skills

Workshop 36

- Wednesday 13th September 2017
- 09:00 - 16:00
- 6CPD/UEC CME

Speakers

Andrea Minervini MD
Domenico Veneziano MD
Pietro Orsini MD
Guglielmo Romano MD
Massimo DiMasi MD
Massimo Tucci MD

Aims & Objectives

1. To introduce the reader to the minimally invasive treatment of pelvic organ prolapse.
2. To provide an overview of the surgical techniques involved in laparoscopic and robotic surgery.
3. To discuss the advantages and disadvantages of each technique.

Keywords: Laparoscopic, Robotic, Pelvic Organ Prolapse, Surgical Techniques.
How to do laparoscopic and robotic promontofixation: theoretical and practical skills.

Simulation is the imitation of the operation of a real-world process or system over time.

Wikipedia

Surgical simulation is a complex science

- Cognitive task analysis
- Simulator design
- Training curriculum design
- Simulator validation
- Performance assessment
- Clinical proficiency assessment
- Non-technical skills evaluation and training
- Surgical instrument development and testing
- Surgical procedure evaluation
- Training the trainer

How to do laparoscopic and robotic promontofixation: theoretical and practical skills.

E-BLS/BLUS/FLS

Cadaver

How to do laparoscopic and robotic promontofixation: theoretical and practical skills.

Modular Hands-on training - Laparoscopic surgery

more

Complete procedure
Basic skills

Complex tasks
Simulating real-life scenarios

Specialty related
Simulator fidelity

less

Needle handling
Cauterization
Tissue sparing

Time: 30 mins (7 mins per task)

E-BLS/BLUS/FLS

Cadaver

How to do laparoscopic and robotic promontofixation: theoretical and practical skills.

robotic promontofixation: basic skills on BBZ robotic simulator

- Bi-manual dexterity
- Clutch control
- Needle handling
- Cauterization
- Tissue sparing

Time: 30 mins (7 mins per task)
How to do laparoscopic and robotic promontofixation: theoretical and practical skills.

- Vaginal manipulation
- Suturing
- Mesh preparation
- Mesh placement

Time: 30 mins
PLANNING AND PREPARATION

INDICATIONS
- Treatment of choice for women with female genital organ prolapse associated with symptoms of descent or stress/mixed urinary incontinence.
- Demonstrated success in the settings of vaginal vault prolapse as well as multi-compartment POP.
- Subjective success 74-98% (short FU).

SPECIFIC MATERIALS
- High-definition laparoscopic stack
- 10mm 0° laparoscope
- 2 x 5mm Johann graspers
- 5mm Maryland dissector
- 5mm diathermy scissors
- 5mm bipolar diathermy grasper
- 5mm needle holder
- 3 x 5mm laparoscopic trocars
- 12mm camera port
- Polypropylene mesh
- 0 nylon sutures
- 2/0 Vicryl

LAPAROSCOPIC & ROBOTIC PROMONTOFIXATION: INDICATIONS

The best candidate
- Young women sexually active with recurrent prolapse.
- Vaginal vault prolapse
- Severe prolapse.
Patient Positioning
- Legs fully abducted
- Steep Trendelenburg
- Lap. Stack between legs

Port Placement
- 10-12mm camera port at the umbilicus level (Hasson technique)
- 2 x 5mm on each side at 2/3 distance between umbilicus and ant-sup-iliac spine
- 5mm midway umb-pubis
- 12mmHg Pneumo

Pelvic Exposure
- Mobilize both ascending and descending colon as far as the pelvic brim
- Hold line a incised by monopolar scissor on both side
- This will allow to leave in place only the bladder, uterus and rectum
- A percutaneous suture on a straight needle will secure the uterus to the abdominal wall

Identification of sacral promontory
- Normal easily identified on the right side
- Accurate position confirmed by tactile feedback
- The peritoneum is incised over the bony prominence taking care of:
 - Ant. Sacral artery ([below])
 - Ureter (lateral)

N.B. this maneuver may be very difficult for obese patients because of fat tissue covering the promontory... TAKE CARE!!!!!!!
No during learning curve.....

Perirectal Dissection
- The peritoneal incision is continued lateral to the rectum until the pelvic floor muscles become visible deep in the pelvis.
- Care is taken to preserve perirectal fat, thus minimising risk of iatrogenic bowel injury or neurovascular damage.

Posterior Mesh placement
- We use a two-part mesh set with pre-cut posterior and anterior components (polypropylene).
- The broad end of the posterior mesh is anchored to the levator ani bilaterally as well as to the vaginal vault in the midline.
- A nonabsorbable monofilament should be used. Intracorporeal suturing is essential at this stage.
- The long tongue of the posterior mesh is left long at this stage and will be trimmed later after fixation to the sacral promontory.
- The posterior element of the procedure is now complete and the suture placed earlier to retract the uterus can be removed.
Fenestration of the broad ligaments

- To allow the anterior mesh to be fixed to the sacral promontory, it will later need to be passed through windows in the broad ligaments.
- The peritoneum on either side is incised taking care to avoid damage to the uterine arteries and fallopian tubes.

Anterior dissection

- Ventral deflection of the malleable retractor is used to show the anterior limit of the vaginal vault and to guide dissection of the bladder from the vagina using a combination of monopolar and bipolar diathermy.
- The dissection is continued until the outline of the catheter balloon can be discerned.

- The anterior mesh is now secured to the vaginal vault with nonabsorbable sutures at the apex and along the lateral aspects (= malleable retractor).
- The two ‘tails’ of the mesh can be seen here lying anterior to the uterus and fallopian tubes.

- The three mesh limbs are then secured to the fascia overlying the sacral promontory using a nonabsorbable suture.
- An extracorporeal knot is tied whilst the assistant applies strong retraction to the three limbs of the mesh.
- The knot is then slid down via the 5 mm suprapubic port and two further throws applied intracorporeally.

Finally, any excess mesh is trimmed and the peritoneum is closed so that no mesh is left exposed.
Perioperative Care

- A urethral catheter is left in situ until the patient is ambulant; normally 24 h.
- Prophylactic antibiotics, third generation cephalosporin is given at induction.

From Surgeon to Surgeon

- Sacrocolpopexy should be a relatively straightforward procedure for the experienced laparoscopist.

PITFALLS …..

- Identifying the correct planes is essential for
 - a bloodless dissection
 - mesh free from haematoma
 - avoid the risk of neurovascular damage to the rectum

Vaginal wall necrosis can occur many years after surgery, typically 3 or 4 years after. The risk of this can be minimised by ensuring that any sutures placed in the vaginal wall are as superficial as possible, particularly on the posterior wall that has a less reliable blood supply.

Finally, the surgeon (and patient) should always be aware of a risk of postoperative incontinence which may be unmasked by correcting the prolapse.

LAPAROSCOPIC & ROBOTIC PROMONTOFIXATION: INDICATIONS

It is a grade A recommendation procedure for vaginal vault prolapse (VVP). Further indications include multicompartiment POP and recurrent prolapse after failed vaginal repair.

For younger (<40 years old) and sexually active women with symptomatic POP, SC with mesh provides anatomic pelvic restoration, durable results, less dyspareunia by maintaining vaginal length and axis, and allowing for aseptic mesh placement, thus reducing the risk of mesh infection and erosion.

SC can be performed laparoscopically with or without robotic assistance. At present, the laparoscopic SC (LSC) is widely adopted and there are many reports showing durable results (Grade B recommendation). However, indications and technical aspects are not standardised and vary from country to country [3].

Robotic technology has been marketed based on several possible advantages, including better visualization, extreme maneuverability and greater efficiency and the use of robotic SC (RASC) in the management of female POP appears to be increasing.

Patient Position

The patient is placed in a supine position on a padded vacuum mattress, with open legs. Once the patient is positioned the perineum should be at the edge of the operating bed to facilitate the use of the vaginal manipulator or of the malleable vaginal retractor. Legs should be abducted to help positioning the Da Vinci robot.

The operating bed must provide a Trendelenburg position and in case of a planned contemporary stress incontinence surgery the legs of the patient should be movable to a lithotomy position at the end of the procedure.

Port Placement

The ports are placed in a "W"-shaped configuration or in an "Arch" configuration as for pelvic floor surgery, i.e. robotic assisted laparoscopic proctectomy.

The camera trocar can be placed at the level of the umbilicus. The operating table is positioned into a moderate Trendelenburg position around 20°-25° head down, helping to keep the intestine away the surgical field.
Four robotic arms are generally used, utilizing the camera (with a 0° or a 30° down scope). The robotic instruments employed for the procedure include one Maryland bipolar forceps, a fenestrated Grasper (ProGrasp or Cadiere forceps), robotic monopolar curved scissors (Hot Shears scissors) and one large needle driver. Furthermore, a vaginal manipulator or a malleable vaginal retractor is used to manipulate the vagina during the procedure.

A non-absorbable (polypropylene or soft prolene), 15x10 cm wide mesh is normally used and it is advisable to have it prepared beforehand. The mesh is cut into two pieces: the anterior and the posterior mesh. The total length of both meshes should be approximately 15 cm, any extra length of the tails it is of no importance.

After port placement and docking of the robot, right iliac vessels, the right ureter, the uterus along with right ovary and tube, the vaginal stump, the Douglas pouch and the rectum are identified as the most important landmarks.

If present, to gain a better exposure of the Douglas pouch, the uterus is lifted upwards with either a transcutaneous nylon 0 or 2-0 stitch or with a uterine manipulator. Alternatively, to have a dynamic exposition and traction a ProGrasp forceps can be used.

The peritoneum overlays the promontory is then incised on the right side of the sigmoid colon, care is taken to avoid damage to the iliac vessels and the right ureter. Once the peritoneum is opened, the sacrum and the anterior longitudinal ligament are identified.

The peritoneal incision is extended caudally till the Douglas pouch, on the right side.

Surgical Instruments

Four robotic arms are generally used, utilizing the camera (with a 0° or a 30° down scope). The robotic instruments employed for the procedure include one Maryland bipolar forceps, a fenestrated Grasper (ProGrasp or Cadiere forceps), robotic monopolar curved scissors (Hot Shears scissors) and one large needle driver. Furthermore, a vaginal manipulator or a malleable vaginal retractor is used to manipulate the vagina during the procedure.

Sacrocolpopexy for POP – Potential (current) Downdes of RASC

Port Placement

Douglas Exposure

Promontory Exposure

Posterior Dissection

Posterior mesh fixation to the endopelvic fascia and promontory Douglas closure

Vesico-vaginal dissection and mesh fixation to the vaginal wall

Anterior mesh fixation to the promontory

Peritoneization

Costs of RASC were significantly higher than LSC, although, operational costs collapses when including purchase and maintenance of the robotic system getting costs of RASC and LSC comparable.

Sacrocolpopexy for POP – Key issues in support of RASC

THE FIRST TECHNOLOGICAL INTERFACE BETWEEN SURGEON AND PATIENT

Technically easier and short learning curve

Significant body of evidence

The first technological interface between patients and surgeons

Optimal postoperative functional results as LSC

Future technological improvements to overcome present drawback

Colposacropexy: Anterior mesh fixation

RASC potential downside: Lack of tactile feed back to warrant adequate traction, especially when uterus is in place

Sacrocolpopexy for POP – Potential (current) Downdes of RASC

Port Placement

Douglas Exposure

Promontory Exposure

Posterior Dissection

Posterior mesh fixation to the endopelvic fascia and promontory Douglas closure

Vesico-vaginal dissection and mesh fixation to the vaginal wall

Anterior mesh fixation to the promontory

Peritoneization

Costs of RASC were significantly higher than LSC, although, operational costs collapses when including purchase and maintenance of the robotic system getting costs of RASC and LSC comparable.

Sacrocolpopexy for POP – Key issues in support of RASC

THE FIRST TECHNOLOGICAL INTERFACE BETWEEN SURGEON AND PATIENT

Technically easier and short learning curve

Significant body of evidence

The first technological interface between patients and surgeons

Optimal postoperative functional results as LSC

Future technological improvements to overcome present drawback

Colposacropexy: Anterior mesh fixation

RASC potential downside: Lack of tactile feed back to warrant adequate traction, especially when uterus is in place

Sacrocolpopexy for POP – Potential (current) Downdes of RASC

Port Placement

Douglas Exposure

Promontory Exposure

Posterior Dissection

Posterior mesh fixation to the endopelvic fascia and promontory Douglas closure

Vesico-vaginal dissection and mesh fixation to the vaginal wall

Anterior mesh fixation to the promontory

Peritoneization

Costs of RASC were significantly higher than LSC, although, operational costs collapses when including purchase and maintenance of the robotic system getting costs of RASC and LSC comparable.

Sacrocolpopexy for POP – Key issues in support of RASC

THE FIRST TECHNOLOGICAL INTERFACE BETWEEN SURGEON AND PATIENT

Technically easier and short learning curve

Significant body of evidence

The first technological interface between patients and surgeons

Optimal postoperative functional results as LSC

Future technological improvements to overcome present drawback

Colposacropexy: Anterior mesh fixation

RASC potential downside: Lack of tactile feed back to warrant adequate traction, especially when uterus is in place

Sacrocolpopexy for POP – Potential (current) Downdes of RASC

Port Placement

Douglas Exposure

Promontory Exposure

Posterior Dissection

Posterior mesh fixation to the endopelvic fascia and promontory Douglas closure

Vesico-vaginal dissection and mesh fixation to the vaginal wall

Anterior mesh fixation to the promontory

Peritoneization

Costs of RASC were significantly higher than LSC, although, operational costs collapses when including purchase and maintenance of the robotic system getting costs of RASC and LSC comparable.

Sacrocolpopexy for POP – Key issues in support of RASC

THE FIRST TECHNOLOGICAL INTERFACE BETWEEN SURGEON AND PATIENT

Technically easier and short learning curve

Significant body of evidence

The first technological interface between patients and surgeons

Optimal postoperative functional results as LSC

Future technological improvements to overcome present drawback

Colposacropexy: Anterior mesh fixation

RASC potential downside: Lack of tactile feed back to warrant adequate traction, especially when uterus is in place

Sacrocolpopexy for POP – Potential (current) Downdes of RASC

Port Placement

Douglas Exposure

Promontory Exposure

Posterior Dissection

Posterior mesh fixation to the endopelvic fascia and promontory Douglas closure

Vesico-vaginal dissection and mesh fixation to the vaginal wall

Anterior mesh fixation to the promontory

Peritoneization

Costs of RASC were significantly higher than LSC, although, operational costs collapses when including purchase and maintenance of the robotic system getting costs of RASC and LSC comparable.
UTERUS PRESERVATION

1. Uterus is a "central" element in pelvic statics. Preserving the uterus means preserving normal pelvic anatomy and function.
2. Surgery:
 - Easier technique (less blood loss)
 - Shorter operating time and hospital stay
 - Fewer post-operative complications (less erosions)
 - Major considerations in elderly women or patients with concomitant pathologies
3. Because we must take the woman’s point of view into account.