Aims of Workshop
To present a practical approach to female damaged urethra including strictures, diverticula, defunctionalized and tethered urethra in non-neurogenic and neurogenic scenarios. The learning process will be based on the discussion videos and clinical cases.

Learning Objectives
Objective 1- To diagnosis and treat primary bladder neck obstruction.
Objective 2- To select the proper technique for female urethra stenosis.
Objective 3- Awareness of the transgender urethra.

Learning Outcomes
At the end of the workshop the attendees should be able to diagnose and manage female urethra problems properly, should it be functional or anatomical. Select the proper technique for each patient and be aware of the transgender urethra.

Target Audience
urologists, gynecologists, urogynecologists

Advanced/Basic
Advanced

Conditions for Learning
This is a clinical oriented course addressing the female and transgender urethra based on clinical scenarios and surgical techniques.

Suggested Learning before Workshop Attendance
None.

Suggested Reading
Female urethral stricture: a contemporary series.
Spilotros M1, Malde S2, Solomon E2, Grewal M2, Mukhtar BM2, Pakzad M2, Hamid R2, Ockrim JL2, Greenwell TJ2.

Role of urodynamics in management of urethral diverticulum in females.
Lin KJ, Fan YH, Lin AT.

Select item 28660723 5.

Calculus in female urethral diverticulum eroded to the vagina.
Abrahão LM, de Toledo LGM, de Castro Cardoso SN.

Other Supporting Documents, Teaching Tools, Patient Education etc
https://www.youtube.com/watch?v=1K5qViAdZ_w
https://www.youtube.com/watch?v=q67V0747u7Q&t=4s
Female urethral stenosis: which approach for which patient?

Paulo Palma, M.D., PhD
Professor & Chairman of Urology
Universidade Estadual de Campinas, UNICAMP, Brazil

The incidence of bladder outlet obstruction in women with LUTS varies from 2.7 to 8% and urethral stricture accounts for 4-13% of those with bladder outlet obstruction.

Diagnosis include irritative and obstructive voiding symptoms, painful or traumatic catheterization, elevated post residual volume.

On physical examination we can detect meatal stenosis and also difficult to introduce a sound 12F or up to 18Fr.

Imaging studies as voiding cystourethography disclose open bladder neck, relaxed sphincter and narrowed urethra.

Urodynamic evaluation typically shows high pressure and low flow and sometimes elevated PVR. There are various urodynamics patterns and some nomograms are available.

Selecting the proper approach for each patient includes many aspects such as age, fragility status, patient’s compliance and preferences.

Urethral dilation is accepted as primary or chronic therapy with a success rate of 47% in a follow up of 43 months. Important to note that the success rate is 58% in naïve patients and drops to 27.2% in patients with prior dilations.

Surgical approach includes

1. Distal urethrectomy mainly for meatal stenosis
2. Endoscopic urethrotomy for small stenosis as primary treatment
3. Labium minus graft for strictures over 2 cm
4. Vaginal flap urethroplasty
5. Buccal graft urethroplasty

In order to select the best technique for each patient we should take into account, patients need and expectations, length and localization of the stricture, age, surgeon expertise and preference.

The surgical treatment with flaps/grafts has the highest success rate; whereas less invasive procedures such as urethrotomy/meatotomy/dilations/self-catheterization should be reserved for short female urethra stenosis or women with high comorbidity.

References

Dorsal vaginal graft urethroplasty for female urethral stricture disease.

Petrou SP1, Rogers AE, Parker AS, Green KM, McRoberts JW.

Contemporary surgical management of female urethral stricture disease.

Osman NI1, Chapple CR.

Urethral stricture in women

Escribano Patiño G1, Husillos Alonso A, Rodriguez Fernandez E, Cancho Gil MJ, Hernandez Fernandez C.
Arch Esp Urol. 2014 Jan-Feb;67(1):129-37.

Urethral Diverticulum: Diagnosis and Treatment

Cássio Riccetto MD
Division of Urology, University of Campinas – UNICAMP, Sao Paulo, Brazil

The incidence of urethral diverticulum is around 0.6% among women with lower urinary tract symptoms. It is usually secondary from the infection of the periurethral glands resulting in dilation and coalescence, creating a sinus.
In general, patients with urethral diverticulum have recurrent urinary tract infection that may be associated with dyspareunia (10%) and urethral pain. Post-voiding urinary incontinence can occur in up to 25% of patients. In typical presentation, one can find a periurethral cystic tumor draining purulent secretion from the urethra during its finger pressure. The most common differential diagnoses include urethral caruncula, Skene's gland abscess, urethral prolapse, vaginal wall cysts, Gartner's duct cyst and urethral leiomioma. Although transvaginal and transperineal ultrasound usually demonstrate the diverticulum, magnetic resonance imaging is the most commonly used method in preoperative planning.

Most patients with urethral diverticulum need surgical treatment, and several procedures have been described. The endoscopic marsupialization technique uses the Collins knife to incise the diverticulum cervix and is reserved for the those located at the distal aspect of the urethra. Open marsupialization can also be used, since it does not cause damage to the midurethral continence mechanism.

Some authors recommend transvaginal excision with flap closure as the surgical treatment of choice for the diverticula of the mid and proximal urethra. This technique allows complete resection of the diverticulum and suture in three planes (urethral mucosa plus spongiosous tissue, pericervical “fascia” and vaginal wall) without tension. Surgery is performed with the patient placed in lithotomy position. Initially, a Foley 14F catheter is inserted into the urethra and a vaginal retractor is placed. Then, an inverted “U” incision is made with the apex over the distal urethra. The dissection of the vaginal flap toward the bladder neck is followed by a transverse incision in the pubocervical “fascia” exposing the diverticulum. Dissection of the diverticulum follows through the exposed circumference until the diverticular cervix is identified. The identification of the cervix of the diverticulum is imperative to ensure complete resection and prevention of recurrence.

After complete excision of the diverticulum, the urethral defect is closed vertically on the Foley 14Fr catheter using 5-0 polydioxanone suture. The periurethral fascia is transversally closed with 3-0 polyglactin suture. The interposition of a Martius flap between the urethra and the vaginal wall is recommended when closure in three planes is not possible or when the preservation of the pubocervical fascia seems to be inadequate. The third plan comprises the closure of the anterior vaginal wall, which is performed using 2-0 polyglactin suture. Patients should receive antimicrobials until the bladder catheter is removed, usually after 7-10 days postoperative. Anticholinergic agents could be used to prevent bladder contraction up to 24 hours.

If urethral diverticulum is associated with stress urinary incontinence, it can be treated with a sling, at the same time of diverticulectomy or later. Some authors recommend sling implant 3-6 months after diverticulectomy, in order to minimize the risk of infection, formation of fistula and erosion of the urethra through the sling.

In conclusion, urethral diverticulectomy requires surgeon’s patience and skill, as the primary correction offers a greater possibility of cure and, on the contrary, reoperation is routinely more laborious and usually requires a flap interposition.

Urethral Reconstruction in Transgender Patients
Ömer Acar

Gender dysphoria can be described as a discrepancy between the gender assigned at birth and gender identity. Individuals with gender dysphoria are becoming increasingly more accepted in society and therefore the number of patients who feel confident enough to seek gender confirmation surgery has increased substantially.

Genital reconstruction is the final step of an individual’s transition and requires an integrated multidisciplinary approach involving plastic surgeons, urologists, and gynecologists. Genital reconstructive surgery for transgender women and men may include labiaplasty, clitoroplasty, vaginoplasty and vaginectomy, phalloplasty or metoidioplasty, scrotoplasty, placement of penile/testicular prostheses, respectively.

Urethroplasty remains one of the most challenging and technically demanding part of transgender genital reconstruction. The relatively higher incidence (reaching 50% in some series) of urethral complications following gender confirmation surgeries (especially phalloplasty) highlights the importance of reconstructing a functional urethra with an adequate length and caliber in trans males and females.
Urethral reconstruction in female to male transgenders:

- **Metoidioplasty:**
 Metoidioplasty can be used in trans females who want gender confirmation surgery without a complex, multi-staged surgical creation, of an adult-size and functional phallus. The native female urethra is lengthened to reach the tip of the glans, as in males, allowing voiding while standing. Several techniques can be employed for this purpose. The more widely accepted one is based on clitoral lengthening by dissection of the clitoral ligaments dorsally and the short urethral plate ventrally. Bulbar urethral reconstruction is then performed using part of the anterior vaginal wall and the proximal part of the urethral plate. To minimize complications following tubularized urethroplasty, a buccal mucosa graft is usually used as the dorsal half of the neourethra. Covering of the buccal mucosa graft is performed using either a longitudinal dorsal clitoral skin flap or a flap harvested from the inner surface of the labia minora.

- **Phalloplasty:**
 Many options for phallic reconstruction have become available, with either pedicled flaps (abdominal flap, groin flap, anterolateral thigh flap) or free transfer flaps (radial forearm free flap and latissimus dorsi flap). Reconstruction of the neo-urethra includes creation of the bulb part by combining part of the anterior vaginal wall and the wide urethral plate. Further urethral lengthening is carried out using all available hairless genital skin (labia minora, dorsal clitoral skin), forming a new urethral opening in the first third of the neophallus. The more widely utilized technique involves harvesting a radial forearm free flap. This flap is divided into two parts: a narrow inner part, which is rolled skin inwards to form a urethra, and the remainder, which is rolled skin outwards around the urethral flap to form the rest of the phallus. After detachment from the donor site, the neophallus is put into position; the blood vessels are anastomosed under microscope control to the femoral artery and long saphenous vein, and the cutaneous nerves are connected to a dorsal nerve of the clitoris, and to the ileoinguinal nerve. The proximal urethra is then formed from a tube of labia minora and vaginal epithelium around a catheter, and this tube is joined to the inner tube in the neophallus, resulting in a urethra that emerges from the tip of the neophallus.

Urethral reconstruction in male to female transgenders:

- **Vaginoplasty:**
 Vaginoplasty involves the creation of a urethral opening between the neoclitoris and neovaginal introitus. Urethra is basically shortened to allow the urinary stream to face downward in the seated position. The simplest technique for urethral shortening is to divide the urethra in the proximal bulb and suture the urothelium direct to the skin. Another approach would be; spatulation of the urethra, and excision of some or all of the corpus spongiosum posterior to the urethral meatus. The latter approach usually achieves a more satisfactory direction of micturition but has a higher risk of bleeding that can result from having an increased length of spongiosum-based epithelium anastomosed to the skin. In this part of the course; the contemporary surgical techniques that are used for urethral reconstruction in transgender individuals will be covered, giving particular emphasis on the morphological and functional outcomes, complication rates, tips and tricks to avoid complications and troubleshooting principles.

Take home message: Urethral reconstruction in transgender patients is technically challenging, exhibits differences with regard to the direction of transition with the urethroplasty of phalloplasty/metoidioplasty involving urethral mobilization-lengthening-anastomosis and the one employed within the context of vaginoplasty relying mainly on urethral liberation and shortening.

References:
WIN $150 AMAZON VOUCHERS

Please complete the in-app evaluation in the workshop before leaving.

Female urethra: challenging scenarios

Paulo Palma
Professor & chairman of Urology at UNICAMP
President of ALAPP
LATAM Pelvic Floor dysfunction Association

Faculty

- Paulo Palma (Chair)
- Mauro Cervigni
- Omer Acar
- Cassio Riccetto

Affiliations to disclose:

Promedon Argentina - Speaker

Funding for speaker to attend:

- [] Self-funded
- [] Institution (non-industry) funded
- [x] Sponsored by: Promedon

Paulo Palma

Step 1: Open app and select programme by day

Step 2: Locate workshop

Step 3: Scroll to find evaluation button

Step 4: Complete survey - enter email at end to enter prize drawer

A shortened version of the handout has been provided on entrance to the hall

A full handout for all workshops is available via the ICS website.

Please silence all mobile phones

PDF versions of the slides (where approved) will be made available after the meeting via the ICS website so please keep taking photos and video to a minimum.

If so I do recommend the U scanner app
Mauro Cervigni MD
Professor Urogynecology
Director Interstitial Cystitis Referral Center & Female Pelvic Medicine & Reconstructive Surgery Center
Foundation University Hospital A. Gemelli
Catholic University
Rome, Italy

Omer Acar, MD, FEBU
• Fellow in reconstructive urology
• Department of Urology
• University of Illinois at Chicago

Cassio Riccetto
• Associate professor of Urology at UNICAMP school of medicine, Campinas, SP, Brazil.
• Chief female urology division Hospital das Clinicas, UNICAMP

Paulo Palma
• Professor & Chairman Division of Urology @ UNICAMP, Campinas, SP, Brasil
• President of ALAPP (Latin America Pelvic Floor Association)
• Member of the CAU Academy Confederación Americana de Urología

Programme
• Primary obstruction of the bladder neck - Mauro Cervigni
• Urethral stenosis: which approach for which patient - Paulo Palma
• Urethral diverticula - Cassio Riccetto
• Urethral reconstruction in transgender patients - Omer Acar

Discussion of challenge cases

Friendly reminder
• You are welcome to this WS
• Please do not be shy
• We do appreciate interactivity
• So, feel free to ask questions or make comments when appropriate

Thank you
ETIOLOGY OF FEMALE BLADDER OUTLET OBSTRUCTION

- Anatomical
 - Pelvic organ prolapse (POP)
 - Anterior/posterior/rectocele
 - Urethral diverticulum
 - Urethral stricture disease
 - Urethral sphincter deficiency

- Functional
 - Primary Bladder neck obstruction (PBNO)
 - Dysfunctional voiding (DV)
 - Fowlers syndrome
 - Detrusor external sphincter dyssynergia (DES)

ETIOLOGY

- (not clear, several hypotheses)
 - related to fibrosis, hypertrophy, or abnormal configuration
 - of the musculature
 - functional etiology
 - In PBNO, the pressure at the bladder neck appears to remain elevated in comparison with intravesical pressure during voiding.
 - Striated muscle extends from the external sphincter to the bladder neck in these patients.
 - Increased sympathetic activity at the bladder neck

DEFINITION AND EPIDEMIOLOGY

- Series have suggested that among women with voiding dysfunction, the incidence of PBNO ranges from 4.6% to 8.7%

- PBNO is caused by a lack of relaxation of the smooth muscle at the bladder neck at voiding phase, resulting in obstruction of urinary flow

IN THE ABSENCE OF:

1. Other anatomic obstruction (i.e. BPO, prolapse)
2. Increased striated sphincter activity

CLINICAL PRESENTATION

VOIDING SYMPTOMS

- Decreased force of stream
- Hesitancy
- Intermittent stream
- Incomplete emptying

STORAGE SYMPTOMS

- Frequency
- Urgency
- Urge incontinence
- Nocturia

OR A COMBINATION:

- The initial presentation may be urinary retention

NO SUBSTANTIAL DIFFERENCES BETWEEN MEN AND WOMEN

(women did report less pelvic pain than men)
DIAGNOSIS

PBNO

Diagnosis is a videourodynamic
the hallmarks of which are:
- relative high-pressure
- low-flow
- voiding with radiographic evidence of obstruction at the BN with relaxation of the striated sphincter and no evidence of distal obstruction
- some patients can actually present with a large PVR volume

Nitti V. Urol. 2005; 7:S12–7

In women, the pressure/flow criteria for PBNO are even less defined according to the videourodynamic criteria:
- a detrusor contraction of any magnitude associated with radiographic evidence of obstruction at the bladder neck is adequate to diagnose PBNO
- Chassange et al proposed cut-off points for obstruction of 15 mL/s or less for qmax and greater than 20 cm H2O for detrusor pressure at maximum flow.
- a simultaneous radiographic study is still needed to localize the obstruction and make a definitive diagnosis

Neurourology and Urodynamics. 2017;5999:1–11

<table>
<thead>
<tr>
<th>Diagnosis and management of BOO in women by cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic</td>
</tr>
<tr>
<td>- observation</td>
</tr>
<tr>
<td>- clean intermittent catheterization</td>
</tr>
<tr>
<td>- alpha-blockers</td>
</tr>
<tr>
<td>- botulinum toxin A (botox) injection at the bladder neck</td>
</tr>
<tr>
<td>- neuromodulation</td>
</tr>
<tr>
<td>- transurethral incision of the bladder neck</td>
</tr>
</tbody>
</table>

TREATMENT

PBNO

Diagnosis is a videourodynamic
the hallmarks of which are:
- relative high-pressure
- low-flow
- voiding with radiographic evidence of obstruction at the BN with relaxation of the striated sphincter and no evidence of distal obstruction
- some patients can actually present with a large PVR volume

Nitti V. Urol. 2005; 7:S12–7

In women, the pressure/flow criteria for PBNO are even less defined according to the videourodynamic criteria:
- a detrusor contraction of any magnitude associated with radiographic evidence of obstruction at the bladder neck is adequate to diagnose PBNO
- Chassange et al proposed cut-off points for obstruction of 15 mL/s or less for qmax and greater than 20 cm H2O for detrusor pressure at maximum flow.
- a simultaneous radiographic study is still needed to localize the obstruction and make a definitive diagnosis

Neurourology and Urodynamics. 2017;5999:1–11

<table>
<thead>
<tr>
<th>Diagnosis and management of BOO in women by cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic</td>
</tr>
<tr>
<td>- observation</td>
</tr>
<tr>
<td>- clean intermittent catheterization</td>
</tr>
<tr>
<td>- alpha-blockers</td>
</tr>
<tr>
<td>- botulinum toxin A (botox) injection at the bladder neck</td>
</tr>
<tr>
<td>- neuromodulation</td>
</tr>
<tr>
<td>- transurethral incision of the bladder neck</td>
</tr>
</tbody>
</table>

TREATMENT

PBNO

Diagnosis is a videourodynamic
the hallmarks of which are:
- relative high-pressure
- low-flow
- voiding with radiographic evidence of obstruction at the BN with relaxation of the striated sphincter and no evidence of distal obstruction
- some patients can actually present with a large PVR volume

Nitti V. Urol. 2005; 7:S12–7

In women, the pressure/flow criteria for PBNO are even less defined according to the videourodynamic criteria:
- a detrusor contraction of any magnitude associated with radiographic evidence of obstruction at the bladder neck is adequate to diagnose PBNO
- Chassange et al proposed cut-off points for obstruction of 15 mL/s or less for qmax and greater than 20 cm H2O for detrusor pressure at maximum flow.
- a simultaneous radiographic study is still needed to localize the obstruction and make a definitive diagnosis

Neurourology and Urodynamics. 2017;5999:1–11

<table>
<thead>
<tr>
<th>Diagnosis and management of BOO in women by cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic</td>
</tr>
<tr>
<td>- observation</td>
</tr>
<tr>
<td>- clean intermittent catheterization</td>
</tr>
<tr>
<td>- alpha-blockers</td>
</tr>
<tr>
<td>- botulinum toxin A (botox) injection at the bladder neck</td>
</tr>
<tr>
<td>- neuromodulation</td>
</tr>
<tr>
<td>- transurethral incision of the bladder neck</td>
</tr>
</tbody>
</table>

TREATMENT

PBNO

Diagnosis is a videourodynamic
the hallmarks of which are:
- relative high-pressure
- low-flow
- voiding with radiographic evidence of obstruction at the BN with relaxation of the striated sphincter and no evidence of distal obstruction
- some patients can actually present with a large PVR volume

Nitti V. Urol. 2005; 7:S12–7

In women, the pressure/flow criteria for PBNO are even less defined according to the videourodynamic criteria:
- a detrusor contraction of any magnitude associated with radiographic evidence of obstruction at the bladder neck is adequate to diagnose PBNO
- Chassange et al proposed cut-off points for obstruction of 15 mL/s or less for qmax and greater than 20 cm H2O for detrusor pressure at maximum flow.
- a simultaneous radiographic study is still needed to localize the obstruction and make a definitive diagnosis

Neurourology and Urodynamics. 2017;5999:1–11

<table>
<thead>
<tr>
<th>Diagnosis and management of BOO in women by cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic</td>
</tr>
<tr>
<td>- observation</td>
</tr>
</tbody>
</table>
• if the patient is not significantly bothered by the symptoms and does not have any concerning findings on evaluation

• followed closely with history and physical exam, noninvasive uroflow, and evaluation of postvoid residual.

• any concerning changes in these noninvasive evaluations should prompt further diagnostic testing and, possibly, further treatment

OBSERVATION

• about 50–64% of women with PBNO responded well to alpha-blocker therapy.

• in these patients the flow rates increased, and the PVR volume decreased.

• alpha-blocker therapy should be tried before invasive therapy, as there are few side-effects and the efficacy of alpha-blocker therapy might suggest a good response to bladder neck incision.

• alpha-blockers

BOTOX INJECTION AT THE BLADDER NECK

• botox injection into urethral sphincter has been used in some studies, and the therapeutic effects of improvement in detrusor contractility or PVR were noted in women

Kuo HC. Urology 2007; 69: 57–61

• randomized prospective studies are still lacking, and the numbers of patients in these studies are small

Neuromodulation and botox injection are alternatives and should be regarded as experimental trials

NEUROMODULATION

Although sacral neuromodulatory therapy for lower urinary tract dysfunction seemed effective, the management specific to PBNO is not reported.

• transurethral resection or incision of the bladder neck usually provides definitive treatment for BPNO

• most authors make two incisions, usually at the 5 and 7 o’clock positions, while some make only one, usually in the midline complications:
 ➢ SUI - in females

• the use of a pediatric resectoscope and Collins knife, and one bladder neck incision, might decrease the chance of SUI.

TRANSURETHRAL INCISION OF THE BLADDER NECK

Bladder neck incision for female bladder neck obstruction: long-term outcomes

Peng Zeng, Chunlin Wu, Jing Yao, Yong Yang, Peng Cheng, and Weining Zhang.

Female Urology

VIDEourodynamic study in a 36-year-old woman with PBNO

[Graph showing bladder neck incision with high distal pressure]
Female BOO can result from various disorders, which can be separated into anatomic, functional and neurogenic causes.

Though many criteria have been proposed, a consensus is still lacking for an objective definition of female BOO.

To accurately diagnose and treat female BOO, a combination of pressure/flow data, imaging, and EMG should be utilized.

Studies investigating the role of urinary nerve growth factors and transvaginal ultrasound represent promising areas of research for diagnostic and management monitoring.
Urethral stenosis: which approach for which patient?

Paulo Palma
Professor & Chairman of Urology @ UNICAMP
President of ALAPP
LATAM Pelvic Floor Dysfunction Society

Introduction
• Incidence/prevalence
• Diagnosis
• Historic perspective of treatment
 Urethral dilation
 Internal urethrotomy
 Surgical treatment

Incidence/prevalence of stricture disease in women
• Urologic disease in America 2008 (1)
• Office visits for female urethra stricture
 186/100,000 or 0.19% 1992-2000
 7 times higher in women over 65 y
• 37 cases of true strictures 1965-2008
 Santucci R A, J Urol, 2008

Incidence/prevalence of stricture disease in women
• Bladder outlet obstruction in women
 2.7-8% of women with LUTS (1)
• Urethral stricture disease
 4-13% of BOO in women (2,3)

Diagnosis of urethral stricture
• History/Physical
 Irritative/obstructive voiding symptoms
 Painful, traumatic catheterization, traumatic delivery, car accident
 Elevated Post Voided residuals
• VCUG
 Open bladder neck, distal narrowed urethra
• Urodynamics
 Obstructed on pressure/flow

VCUG
Primary Obstruction of the bladder neck
Urethral stenosis

2. Groutz A. Neurourol and Urodyn, 2000
3. Kuo HC. Urology, 2005
Diagnosis of urethral stricture

- Cystoscopy
- Inability to pass a catheter
- 12 Gr (1)
- 14 Fr (2)
- 17 Fr (3)
- 18 Fr (4)
- 20 Fr (5,6)

1. Gomerly EA. Neurourol Urodyn, 2010
2. Smith AL. BJU Int, 2006
4. Petrou SP. BJU Int, 2012
5. Bremen D. J Urol 1951
6. Montorsi F. Urol Int, 2002

Surgical approach to the urethra

- No guidelines or recommendations on this at present
- Evidence would suggest either a dorsal or ventral approach
- Consider Martius flap if intend inserting a sling
- Consider sling at first operation if severely incontinent, otherwise I favour a two stage approach

Number of female urethral stricture procedures 2014

- Diagnosis of female urethral stricture: 35,712
- Procedures for female urethral strictures: 25,853
 - Urethral dilation
 - Meatal excision
 - Vaginal flap urethroplasty
 - Labium minus graft
 - Buccal mucosal graft urethroplasty

Urethral dilation for female urethral stricture

- Primary or chronic therapy
- 47% success rate with a mean F/U 43 months
- 58% in patients without prior dilation vs 27.2% in patients with prior dilation

Orman N. Eur Urol, 2013
Stenosis post car accident

Traumatic not aligned urethral stricture

Grafts

Labium minus graft

Conclusions

- Consider urethral dilation for the elderly unfit patients
- **Urethroplasty/Meatoplasty**
 - Effective
 - Durable results
- Vaginal flap/labium minus
 - simple
- Buccal mucosa
 - If diseased or limited vaginal tissue
 - Ideal for long strictures
Female Urethral Diverticulum

A urethral diverticulum in the female is a variably sized urine-filled periurethral cystic structure adjacent to the urethra and connected to it by an ostium.

Pathophysiology

Infection of periurethral glands
- Edema and obstruction of ducts
 - Abscess
 - Erosion/drainage to urethral lumen
 - Diverticulum
- Enlargement due to recurrent infection

Anatomical landmarks

Urethra is suspended from the pelvic sidewall (tendinous arc) by the urethropelvic ligament.
- Abdominal side: endopelvic fascia
- Vaginal side: periurethral fascia
Types

Normal urethra

Incipient diverticulum

Saddlebag like

Circunferential and/or multiloculated presentation

Clinical presentation

- 3 “Ds” : dysuria, dyspareunia and dribbling (postvoid)
- Since assyntomatic (up to 20%) to very debilitating and painful vaginal mass
- Anatomic variations ensure that each case is unique

Clinical presentation

- Dysuria (up to 50%)
- Recurrent UTI (up to 40%)
- Dyspareunia (up to 25%)
- Postvoiding urinary leakage (up to 10%)
- Urgency
- Voiding dysfunction
- Hematuria
- Purulent urethral discharge
Differential diagnosis
- Urethral caruncula
- Skene gland abscess
- Urethral prolapse
- Ectopic ureter/ureterocele
- Vaginal wall cyst
- Urethral leiomyoma
- Vaginal carcinoma

Diagnosis
- Physical examination
- Voiding cystourethrography
- 3D Tomography
- Magnetic Resonance Imaging
Pre treatment work up

- Topic estrogen stimulation
- Cystoscopy (neck)
- (Video) urodynamics (optional)
 - Complaint of SUI: 33%

Treatment

- Transvaginal excision and urethroplasty
- Expectant
- Marsupialization
 - Few information regarding the natural history of untreated UD
 - Risk of malignization (adenocarcinoma)

Transvaginal excision

Right (3 layers)
Wrong (2 layers)

Pubocervical fascia: transverse incision

Vaginal wall: inverted "U" incision
Treatment

- Pubocervical fascia: transverse incision

- Dissection of the diverticulum

- Urethral suture: 1st layer ininterrupted 5.0 PDS stitches

- Urethral suture: interrupted 5.0 PDS stitches

- Pubocervical fascia suture

- Vaginal wall suture
Treatment

- Martius flap?
- Suprapubic cystostomy?
- Simultaneous sling?
- Suprameatal incision?
Suprametatal approach + Martius flap

Post-operative care

- Urethral catheter: 14 Fr, silicon, 10 days
- Prophylactic antibiotic: until catheter withdrawal
Complications

- Stress urinary incontinence: up to 20%¹
- Urethrovaginal fistula (0.9% - 8.3%)²
- Urethral stenosis (0% - 5.2%)³
- Recurrent diverticulum (1% - 25%)²
- Recurrent UTI (0% - 31.3%)²
- Hypospadia²
- Vaginal stenosis (dyspareunia)²

Take home messages

- Suspect and actively search for a urethral diverticulum in all patients with LUTS without a definite cause
- Success of surgical treatment: adequate dissection and reconstruction of anatomical planes

Thank you!

cassioriccetto@gmail.com
Urethral Reconstruction in Transgender Patients

Omer Acar, MD, FEBU
Genital Reconstruction Fellow
University of Illinois at Chicago, Department of Urology

Affiliations to disclose:
Nothing to disclose

Funding for speaker to attend:
☐ Self-funded
☐ Institution (non-industry) funded
☐ Sponsored by:

Gender Dysphoria

• A discrepancy between the gender assigned at birth and gender identity

• Incidence of GD: 1:60,000 (trans ♂ x4 > trans ♀)

• Individuals with GD are becoming increasingly more accepted in society

• More patients seek gender confirmation surgery

Genital Reconstruction in Transgender Patients

• MtF:
 ➢ Vaginoplasty

• FtM:
 ➢ Metoidioplasty
 ➢ Phalloplasty

Urethroplasty is an integral part of transgender genital reconstruction

Genital Reconstruction in Transgender Patients

• MtF:
 ➢ Vaginoplasty

• FtM:
 ➢ Metoidioplasty
 ➢ Phalloplasty

Urethral Reconstruction – Penile Inversion Vaginoplasty

• Penile disassembly

• Excising some or all of the spongiosum posterior to the urethral meatus

• Reduction and spatulation of the isolated urethral “tube”

• Formation of an urethral opening (urethrostomy)
Urethral Reconstruction – Penile Inversion Vaginoplasty

• **Meatal stenosis:**
 - Rare (2-3%)
 - Late (>2-3 mos)
 - Decreased force of urine, dribbling, retention
 - Revision surgery (meatoplasty)
 - CIC – long term (minority)

Genital Reconstruction in Transgender Patients

• **MtF:**
 ➢ Vaginoplasty

• **FtM:**
 ➢ Metoidioplasty
 ➢ Phalloplasty

Techniques for FtM genital reconstruction

<table>
<thead>
<tr>
<th>Surgical technique</th>
<th>Limitations</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metoidioplasty</td>
<td>Workaround, not capable of sexual penetration, does not always enable voiding while standing</td>
<td>Easy technique, reduced risk of complications, quick recovery time</td>
</tr>
<tr>
<td>Phalloplasty</td>
<td>Urinary tract problems; multiple stages; stiffness or permanent erection if bone is used; donor site morbidity</td>
<td>Possible ability for sexual intercourse; possibly best cosmetic result in penile reconstruction?</td>
</tr>
<tr>
<td>Radial forearm flap</td>
<td>No long-term follow-up available; possibly similar limits to radial forearm flap</td>
<td>Easy to hide the donor site disfigurement</td>
</tr>
<tr>
<td>Anterolateral thigh flap</td>
<td>No long-term follow-up available in the past few years; possibly similar limits to radial forearm flap</td>
<td>Easy to hide the donor site disfigurement</td>
</tr>
<tr>
<td>Hyde flap</td>
<td>No long-term follow-up available; urinary tract not reconstructed; muscle or erection function questionable; donor site morbidity; sexual and tactile sensitivity not reported</td>
<td>No need for an inflatable erection device</td>
</tr>
<tr>
<td>Latissimus dorsi flap</td>
<td>No long-term follow-up available; urinary tract not reconstructed; muscle or erection function questionable; donor site morbidity; sexual and tactile sensitivity not reported</td>
<td>Easy technique</td>
</tr>
<tr>
<td>Scarpophleps flap</td>
<td>Cosmetic appearance unsatisfactory; donor site morbidity; possible urinary tract problems; fully or only partially semieffective; stiffness or erection problems at multiple stages</td>
<td></td>
</tr>
</tbody>
</table>

Metoidioplasty

- A relatively small phallus not capable of penetrative intercourse
- Micturition in the standing position possible
- Native urethra is lengthened to reach the tip of the neo-glans

Metoidioplasty – Technique & Outcomes

- Standing urination - 94%
- Erections - 100%
- Urethral fistula - 17%
- Urethral stricture - 9%
- Overall satisfied - 93%

Genital Reconstruction in Transgender Patients

- MtF:
 - Vaginoplasty

- FtM:
 - Metoidioplasty
 - Phalloplasty

Urethral Reconstruction - RFFF

Yao et al., Journal of Plastic, Reconstructive & Aesthetic Surgery, 2018
Urethral anastomosis

Overall Complications – RFFF Phalloplasty

<table>
<thead>
<tr>
<th>Technique</th>
<th>Complete flap loss %</th>
<th>Partial flap loss %</th>
<th>Urethral fistula %</th>
<th>Urethral stricture %</th>
<th>Donor site complications %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial forearm free flap</td>
<td>19.5 (14)</td>
<td>11.1 (7)</td>
<td>16.6 (11)</td>
<td>18.3 (13)</td>
<td>Incomplete PTSC flap necrosis; 1.7% (2)</td>
</tr>
<tr>
<td>Fibula osteocutaneous free flap</td>
<td>13.5 (9)</td>
<td>9.1 (5)</td>
<td>18.5 (12)</td>
<td>17.5 (11)</td>
<td>2.2% (2)</td>
</tr>
<tr>
<td>ALT flap</td>
<td>8.0 (6)</td>
<td>5.4 (3)</td>
<td>16.7 (11)</td>
<td>19.5 (13)</td>
<td>2.3% (1)</td>
</tr>
<tr>
<td>Latissimus dorsi flap</td>
<td>3.0 (3)</td>
<td>5.4 (3)</td>
<td>16.7 (11)</td>
<td>19.5 (13)</td>
<td>2.3% (1)</td>
</tr>
<tr>
<td>Lateral free flap</td>
<td>2.9 (2)</td>
<td>5.4 (3)</td>
<td>16.7 (11)</td>
<td>19.5 (13)</td>
<td>2.3% (1)</td>
</tr>
<tr>
<td>Scrotal transposition phalloplasty</td>
<td>6.0 (4)</td>
<td>0.0 (0)</td>
<td>16.7 (11)</td>
<td>0.0 (0)</td>
<td>0.0 (0)</td>
</tr>
</tbody>
</table>

Yao et al., Journal of Plastic, Reconstructive & Aesthetic Surgery, 2018

Urethral Complications – RFFF Phalloplasty

- Most common reason for additional surgery;
 - Urethral fistula;
 - Possible healing with urinary diversion only
 - Excision + flap interposition + non-overlapping multi-layer closure
 - Urethral stricture;
 - Type of repair dependent upon multiple factors...
 - EPA, one stage or staged augmented, perineal urethrostomy, meatotomy/meatoplasty

CONCLUSIONS - I

- Increasing demand for gender confirming surgery
- Genital reconstruction as the last step of transitioning
- Urethroplasty is a key component of transgender genital reconstruction
- MtF: urethral liberation, shortening, spatulation and integration into neo-introtitus

CONCLUSIONS - II

- FIM: native urethral lengthening, tubularization and anastomosis (in RFFF phalloplasty)
- Urethral complications are not uncommon, may necessitate revision surgery
- Transgender genital (urethral) reconstruction requires a multidisciplinary team approach
THANK YOU VERY MUCH FOR YOUR ATTENTION...!
History

DM1, a 67 year old lady
Stress Urinary incontinence for 10 years and totally incontinent for 3 years

The referral letter just gynecological surgery 40 years ago and colpodeisi 10 years as well as 3 failed procedures, vaginal and abdominal, TOT 3 years ago. UTI last year

Physical examination

Athrotic gentalia, difficult to examine due local pain, no meatus identified.

Management

What to do?

CT

Management

Physical examination under anesthesia
Cystolithotomy
Follow up

- PO 20, incontinence greatly improved
- Mild SUI