Standardisation of Ambulatory Urodynamic Monitoring: Report of the Standardisation Sub-committee of the International Continence Society for Ambulatory Urodynamics Studies

Ernst van Waalwijk van Doorn,* Kate Anders, Vik Khullar, Sigurd Kulseng-Hanssen, Francesco Pesce, Andrew Robertson, Derek Rosario, and Werner Schäfer

CONTENTS

1. Introduction
2. Indications
3. Terminology
4. Methodology
 4.1. Signals
 4.2. Signal quality
 4.3. Intravesical and abdominal pressure
 4.4. Urethral pressure and conductance
 4.5. Catheter fixation
 4.6. Instructions to patients
5. Analysis
 5.1. Quality assessment
 5.2. Phase identification
 5.3. Event analysis
6. Report
7. Scientific presentation
8. Explanatory examples

1. INTRODUCTION

Ambulatory urodynamic monitoring (AUM) has become an established method of investigating lower urinary tract function. This report recommends standards for terminology, methodology, analysis, and reporting of AUM in a uniform fashion to

International Continence Society Sub-committee on Ambulatory Urodynamics Studies (Ernst van Waalwijk van Doorn, chairman, Anders Mattiasson, coordinating chairman)

*Correspondence to: Ernst van Waalwijk van Doorn, Ph.D., D.Sc., Dept. of Urology, University Hospital Maastricht, 6202 AZ Maastricht, The Netherlands.

© 2000 Wiley-Liss, Inc.
facilitate communication between investigators and to improve the quality of clinical practice and research. The document can be integrated with earlier reports of the International Continence Society (ICS) Committee on Standardisation with special reference to the collated 1988 ICS report [Abrams et al., 1989] and the ICS recommendations on good urodynamic practice [in preparation].

AUM, in contrast to conventional urodynamic studies, frees the patient to be more independent than with fixed urodynamics apparatus. This allows the patient to perform those activities that, he or she knows from experience, will provoke troublesome urinary symptoms.

2. INDICATIONS FOR AUM

- Lower urinary tract symptoms that a conventional urodynamic investigation fails to reproduce or explain
- Situations in which conventional urodynamics may be unsuitable
- Neurogenic lower urinary tract dysfunction
- Evaluation of therapies for lower urinary tract dysfunction

3. TERMINOLOGY

The terminology applied to observations during AUM should, wherever possible, be consistent with terminology used during a conventional urodynamic investigation.

3.1 Definitions

An ambulatory urodynamic investigation is defined as any functional test of the lower urinary tract predominantly utilising natural filling of the urinary tract and reproducing the subject’s normal activity.
The terms introduced by this definition are explained further:

Ambulatory: This refers to the nature of monitoring rather than the mobility of the subject. Monitoring will usually take place outside a urodynamics laboratory.

Natural: This refers to the natural production of urine rather than an artificial medium. Stimulation by forced drinking or pharmacological manipulation must be stated in the methodology.

Remark: The bladder may be pre-filled with an artificial medium but this is not comparable with natural bladder filling. This method of investigation needs further evaluation.

Normal activity: This refers to the activities of the subject during which symptoms are likely to occur. These may include manoeuvres designed specifically to identify the presence of involuntary detrusor or urethral behaviour or to provoke incontinence.

4. METHODOLOGY

4.1 Signals

The following signals have been recorded by AUM:

—Pressure: intravesical, abdominal, urethral, intrapelvic (renal)
—Flow rate
—Micturition volume
—Urinary leakage
—Leakage volume
—Urethral electrical conductance
—Perineal integrated surface electromyography

As examples of AUM investigations, which have been established, home uroflowmetry and ambulatory cystography can be mentioned: the first records the flow (time) signal, the latter at least records the intravesical and abdominal pressure (time) signals.

Additional information that should be recorded during any AUM investigation as event markers representing the following phenomena:

- initiation of voluntary voids
- cessation of voluntary voids
- episodes of urgency
- episodes of discomfort or pain
- provocative manoeuvres
- time and volume of fluid intake
- time and volume of urinary leakage
- time of pad change

4.2 Signal Quality

AUM is more versatile than equivalent conventional urodynamic investigations, but for the same reasons AUM is associated with a greater risk of losing signal quality. Therefore, although all signals should be recorded as recommended in the ICS recommendations on good urodynamic practice, there are a number of cautions that apply specifically to AUM. These are described below.

4.3 Intravesical and Abdominal Pressure Measurement

Although it is possible to measure intravesical and abdominal pressures using fluid-filled lines (water or air), the use of catheter mounted microtip transducers allows greater mobility during AUM. In the absence of continuous supervision, stringent checks on signal quality should be incorporated in the measurement protocol. At the start of monitoring, these should include testing of recorded pressures on-line by coughing and abdominal straining in the supine, sitting, and erect positions. The investigator must be convinced that signal quality is adequate before proceeding with the ambulatory phase of the investigation. Before termination of the investigation and at regular intervals during monitoring, similar checks of signal quality such as cough tests should be carried out. Such tests will serve as a useful retrospective quality check during the interpretation of traces. The following considerations must be taken into account when using microtip transducers:

- Transducers should be calibrated before every investigation.
- The “zero point” is atmospheric pressure (there is no fixed reference point). All transducers must be “zeroed” at atmospheric pressure before insertion of the catheters.
- Water-filled pressure catheters have a fixed reference point at the upper edge of the symphysis pubis, whereas catheter mounted microtip pressure transducers have no fixed reference point.
- Microtip transducers will record direct contact with solid material (the wall of a
viscus or faecal material) as a change in pressure. The use of multiple transducers may eliminate this source of artefact.

- Under some circumstances, the pressure measured at the transducer surface will result in a discrepancy equal to the difference in vertical height between the two transducers. This can result in the estimated detrusor rest pressure being less than zero (i.e., negative) with, for instance, the patient in the supine position (Figs. 1 and 2).

4.4 Urethral Pressure and Conductance

The recording of urethral pressure is a qualitative measurement with emphasis on changes in pressure rather than absolute values. The use of urethral electrical conductance to identify leakage in association with pressure monitoring facilitates interpretation of urethral pressure traces. Precise positioning and secure fixation of catheters are essential to maintain signal quality. The orientation of the transducer should be documented.

Remark: The use of multiple pressure transducers facilitates identification of movement artefact but increases catheter stiffness and thereby deformation of the urethra during recording.

4.5 Catheter Fixation

As specified earlier, secure catheter fixation is essential to maintain signal quality. Methods that have been used include adhesive tape, suture fixation, and specially designed silicone-fixation devices.

4.6 Recording of Urinary Leakage

The method of urine leakage determination should be recorded. It should be stated whether the urinary leakage is recorded as a signal with the pressure measurements or is dependent on the subject pressing an event marker button or completing a urinary diary.

4.7 Instructions to the Patient

Detailed instructions as to recording of symptoms, identification of catheter displacement, and hardware failure should be given to the patient. It is the recommendation of this group that such verbal instructions should be reinforced by written instructions, and, in addition to the hardware built into the system, the patient is provided with a simple diary to record events. This allows the common primary aim of all urodynamics, i.e., to correlate the test outcome with symptoms.

5. ANALYSIS

5.1 Quality Assessment

The first step in the analysis of an AUM trace is the assessment of the quality of data recorded. The specific points that should be addressed with regard to pressure measurement are
Is the trace “active,” i.e., fine second to second variation in pressure rather than a fine line?
- Is the baseline static or highly variable?
- Are the cough tests or other activities causing abdominal pressure changes that can be used for signal plausibility check, regularly present?
- Is the subtraction adequate, e.g., minimal change in subtracted detrusor pressure with coughing?

If the technical quality of the traces is less than perfect, then, although the investigation may yield valuable clinical information, in the context of accurate measurement, the pressure recordings must be viewed as qualitative and further quantitative analysis can be flawed.

5.2 Phase Identification

Depending on the purpose of the investigation, markers must be placed to identify voluntary voids and allow differentiation of such events from involuntary events, which may be associated with changes in recorded pressure. The protocol of the investigation should specifically state the point at which the markers identifying commencement and cessation of a voluntary void are placed. Analysis of the voiding phase follows the same principles and terminology used during a conventional pressure-flow investigation.

5.3 Events

The use of a patient diary considerably improves the detailed analysis of events occurring during AUM and is strongly recommended. The events usually recorded during AUM are identified in section 4.1. Typical events occurring during the filling phase are detrusor contractions, urethral relaxation, and episodes of urgency and incontinence.

Remark: At least for research purposes it is strongly advised to define and validate variables for quantitative interpretation. Validation means to establish data on healthy volunteers and specific patient groups, test–re-test reproducibility, inter-rater validity, and sensitivity to treatment modalities.

6. CLINICAL REPORT

The report should be tailored to the urodynamic indication(s) and can include the following:
- Indication(s) and/or urodynamic question(s) (obligatory)
- Duration of recording
- Signal/data quality description
- Fill rate, timing, method, and volume of any retrograde filling before commencing AUM
- Dose and timing of diuretics if administered
- Volume of fluid drunk during the test
- Number of voids
- Total and range of voided volumes and post-micturition urinary residual
- Episodes of urgency, urinary incontinence, and pain
• Detrusor activity during the filling phase (frequency, time, duration, amplitude, area, form)
• Pressure/flow analysis
• Results of provocative manoeuvres employed during the test
• Reasons for termination of recording if prematurely terminated

7. SCIENTIFIC PRESENTATION

To facilitate clear communication and evaluation regarding AUM, the following guidelines should be applied:

Description of AUM protocol, which should include:

• Planned duration of recording
• Actual duration of recording
• Signal/data quality assessment
• Specification of recording device, i.e., manufacturer, type, sampling rates, events button(s)
• Catheter: type, transducer, location, route, and fixation technique
• Leakage detection method or device
• Urinary flow transducer
• Protocol for diuresis
• Volume and timing of fluid drunk during test
• Dose and timing of diuretics administered
• Fill rate, timing, method, and volume of any retrograde filling before or during AUM
• Events recorded by diary or electronic markers
• Detrusor activity during the filling phase with any associated urgency, incontinence, and pain
• Pressure/flow analysis (according to ICS standards)
• Any provocative manoeuvres employed during the test
• Reasons for premature termination of recording
• Presentation of urodynamic curves should include
 • —channel identification
 • —units of measurement
 • —minimum scale for pressures should be 2 mL/5 cm H₂O
 • —minimum scale for time should be 4 cm/minute

8. EXPLANATORY EXAMPLES

This section aims to support this report and stimulate the further growth of use of AUM by giving examples of AUM traces with specific events. The examples with the explanatory text will also help to increase one’s ability to interpret AUM traces (Figs. 3–12).

General information on traces:

—The analysis of AUM traces requires the ability to look at different time and signal scales. To study these examples, it is necessary to look every time at the x- and y-axis scales and the pressure ranges.
Fig. 3. Typical traces of a double and single cough in supine position at 16 samples per second (x-axis, 7 seconds).

Fig. 4. On the left, typical traces of a contraction of the urethral sphincter mechanism. On the right squeezing combined with a change in position causing displacement of urethral sensor.
Fig. 5. In the middle typical movement artifact on the urethral pressure trace, causing sensor displacement; after the movement artifact, the urethral pressure level has decreased. The conductance signals show an increased level indicating a displacement of the catheter towards the bladder neck.

Fig. 6. Typical traces show walking (first half), respiration (third quarter), walking (last quarter). Of course, the pressure waves caused by breathing can also be detected during walking. Generally it can be stated that the pressure waves due to respiration are affected by the type of respiration, the physical activity, and patient’s stature.
Fig. 7. Typical abdominal and detrusor traces during rectal activity. Here, the patient is at rest and hardly any effect of respiration can be detected in the traces.

Fig. 8. This example shows the traces of about 90-second duration. Because the sample rate for the pressure signals is 16 Hz, it is not possible to plot every single sample value in the trace. The double lines represent the envelope of the pressure signals. This means that at every dot on the x-axis, the minimum and maximum pressure values of the time interval, represented by those dots, are plotted. In this plot we see a sequence of events: the patient is sitting (left), stands up (movement artifact urethra signal and abdominal activity in the vesical and abdominal traces), walks a few steps (difference between double lines increases). At the cursor position, a “reaching” phenomenon is seen, where the urethra sensor moves shortly towards the highest pressure region in the urethra and at the same time the abdomen is enlarged causing a pressure dip in the vesical and abdominal pressure signals. At 11:10:40, 11:11:10, and 11:11:25, the same kind of movement phenomenon can be seen. In between, the patient walks some steps. At 11:11:30 the patient sits again. Figure 9 shows the same events in detail.
Fig. 9. These traces show in detail the sequence of events described in Fig. 8. Depending on the patient’s activity and the signal quality, one should choose an adequate time resolution for analysis.
Fig. 10. On the left, walking a few steps followed by a reaching movement artifact can be detected, causing a pressure dip in the vesical and rectal traces and a positive wave in the urethral pressure and conductance; at the cough pressure peak, there is decreased transmission towards the urethral sensor, due to distal position of the urethral sensor. This interpretation is also supported by the fact that no change is seen in urethral conductance during the cough.

Fig. 11. This example shows the most common sequence of events in a patient suffering from bladder overactivity and imperative voiding. On the left, the traces start showing walking, followed by a urethral relaxation and detrusor contractions. Then walking towards the toilet with increasing detrusor activity with a moment of urine loss (see conductance signals). Finally the patient enters the toilet at the Event mark (bottom).
Fig. 12. These traces show the continuation of the previous figure; the patient enters the toilet with detrusor activity continuing and sits down, and urethral relaxation and a voiding contraction can be seen, whereas the conductance curves show the flow phase. At the end of voiding, the urethral closure pressure recovers to the pre-voiding level.

—Every example reads from top to bottom: the intravesical, abdominal (rectal), detrusor (subtracted), and urethral pressure signals followed by two urethral conductance signals (proximal and distal).
—For recording, Gaeltec microtransducer catheters (5 French) and a Gaeltec MPR3 recorder are applied with the maximum sample frequency for storage set at 16 Hz.
—At the bottom of each figure, one can see which window, and where, within the complete investigation, is shown.
—Filling and voiding phases are separated by event markers (E) at the x-axis.
—Detrusor contractions are indicated by a bar under the contraction curve.

REFERENCE